|
|
|
@ -1,8 +1,11 @@ |
|
|
|
|
import pandas as pd |
|
|
|
|
import re |
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
# 数据预处理 |
|
|
|
|
with open('data/岗位信息.txt','rb') as file: |
|
|
|
|
import util |
|
|
|
|
|
|
|
|
|
with open('data/岗位信息.txt', 'rb') as file: |
|
|
|
|
job_list = [] |
|
|
|
|
while True: |
|
|
|
|
line = file.readline() |
|
|
|
@ -10,19 +13,19 @@ with open('data/岗位信息.txt','rb') as file: |
|
|
|
|
break |
|
|
|
|
line = eval(line.decode('utf-8')) |
|
|
|
|
try: |
|
|
|
|
line['位置'] = re.split('-',line['位置'])[1] |
|
|
|
|
danwei = re.findall('[\u4e00-\u9fa5]+',line['薪资']) |
|
|
|
|
xinzi = re.findall('\d+.*\d',line['薪资'])[0].split('-') |
|
|
|
|
line['位置'] = re.split('-', line['位置'])[1] |
|
|
|
|
danwei = re.findall('[\u4e00-\u9fa5]+', line['薪资']) |
|
|
|
|
xinzi = re.findall('\d+.*\d', line['薪资'])[0].split('-') |
|
|
|
|
if not xinzi[1]: |
|
|
|
|
xinzi[1] = xinzi[0] |
|
|
|
|
if danwei[0][0] == '万' and danwei[1] == '月': |
|
|
|
|
line['薪资'] = round((float(xinzi[0])+float(xinzi[1]))/2,2) |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1])) / 2, 2) |
|
|
|
|
elif danwei[0][0] == '万' and danwei[1] == '年': |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1])) / 2 /12, 2) |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1])) / 2 / 12, 2) |
|
|
|
|
elif danwei[0] == '千' and danwei[1] == '月': |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1])) / 2 / 10, 2) |
|
|
|
|
elif danwei[0] == '元' and danwei[1:] == '小时': |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1]))*8*22 / 2 / 100, 2) |
|
|
|
|
line['薪资'] = round((float(xinzi[0]) + float(xinzi[1])) * 8 * 22 / 2 / 100, 2) |
|
|
|
|
except: |
|
|
|
|
continue |
|
|
|
|
job_list.append(line) |
|
|
|
@ -33,20 +36,32 @@ xingzhengqu = [item for item in set(job_list_DF.get(key='位置')) if item] |
|
|
|
|
from pyecharts import options as opts |
|
|
|
|
from pyecharts.charts import Pie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAreaWeight(): |
|
|
|
|
result = job_list_DF.groupby('位置').size().reset_index(name='count') |
|
|
|
|
areaName = list(result.位置.values) |
|
|
|
|
areaWeight = list(map(int,result['count'].values)) |
|
|
|
|
areaWeight = list(map(int, result['count'].values)) |
|
|
|
|
areaName_tmp = [] |
|
|
|
|
for index,item in enumerate(areaName): |
|
|
|
|
areaName_tmp.append(item + str(round(areaWeight[index]/sum(areaWeight)*100,2))+'%') |
|
|
|
|
return zip(areaName_tmp,areaWeight) |
|
|
|
|
pie = Pie(init_opts=opts.InitOpts(width='800px',height='800px')) |
|
|
|
|
pie.add('',getAreaWeight()).set_global_opts(title_opts=opts.TitleOpts(title='广州各区岗位分布')) |
|
|
|
|
for index, item in enumerate(areaName): |
|
|
|
|
areaName_tmp.append(item + str(round(areaWeight[index] / sum(areaWeight) * 100, 2)) + '%') |
|
|
|
|
return (areaName_tmp, areaWeight) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pie = Pie(init_opts=opts.InitOpts(width='800px', height='800px')) |
|
|
|
|
data = getAreaWeight() |
|
|
|
|
pie.add("", [list(z) for z in zip(data[0], data[1])]) |
|
|
|
|
pie.set_global_opts(title_opts=opts.TitleOpts(title='广州各区岗位分布')) |
|
|
|
|
image_dir="images/job" |
|
|
|
|
if os.path.exists(image_dir): |
|
|
|
|
util.clearDir(image_dir) |
|
|
|
|
else: |
|
|
|
|
os.makedirs(image_dir) |
|
|
|
|
pie.render('images/job/广州各区岗位分布.html') |
|
|
|
|
|
|
|
|
|
# 求广州单月薪资 |
|
|
|
|
from pyecharts.charts import TreeMap |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAvgPrice(xingzhengqu): |
|
|
|
|
totalPrice = 0 |
|
|
|
|
total = 0 |
|
|
|
@ -54,56 +69,73 @@ def getAvgPrice(xingzhengqu): |
|
|
|
|
if item['位置'] == xingzhengqu: |
|
|
|
|
total = total + 1 |
|
|
|
|
totalPrice = totalPrice + item['薪资'] |
|
|
|
|
return totalPrice / total if total >0 else 0 |
|
|
|
|
return totalPrice / total if total > 0 else 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获取每个区 单月薪资 |
|
|
|
|
def getTotalAvgPrice(): |
|
|
|
|
totalAvgPriceList = [] |
|
|
|
|
totalAvgPriceDirList = [] |
|
|
|
|
for index, item in enumerate(xingzhengqu): |
|
|
|
|
avg_price = getAvgPrice(item) |
|
|
|
|
totalAvgPriceList.append(round(avg_price,2)) |
|
|
|
|
totalAvgPriceDirList.append({'value':round(avg_price,2),'name':item + " ¥" + str(round(avg_price,2)) +' 万'}) |
|
|
|
|
totalAvgPriceList.append(round(avg_price, 2)) |
|
|
|
|
totalAvgPriceDirList.append( |
|
|
|
|
{'value': round(avg_price, 2), 'name': item + " ¥" + str(round(avg_price, 2)) + ' 万'}) |
|
|
|
|
return totalAvgPriceDirList |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = getTotalAvgPrice() |
|
|
|
|
treemap = TreeMap(init_opts=opts.InitOpts(width='1200px',height='1400px')) |
|
|
|
|
treemap.add('广州各区每月薪资:万/月',data,label_opts=opts.LabelOpts(is_show=True, position='inside',font_size=13)) |
|
|
|
|
treemap = TreeMap(init_opts=opts.InitOpts(width='1200px', height='1400px')) |
|
|
|
|
treemap.add('广州各区每月薪资:万/月', data, label_opts=opts.LabelOpts(is_show=True, position='inside', font_size=13)) |
|
|
|
|
treemap.render('images/job/广州各区每月薪资.html') |
|
|
|
|
|
|
|
|
|
# 获取每个区 单日薪资 |
|
|
|
|
from pyecharts.charts import Bar |
|
|
|
|
|
|
|
|
|
totalAvgPriceList = [] |
|
|
|
|
for index,item in enumerate(xingzhengqu): |
|
|
|
|
for index, item in enumerate(xingzhengqu): |
|
|
|
|
avg_price = getAvgPrice(item) |
|
|
|
|
totalAvgPriceList.append(round(avg_price*10000/30,2)) |
|
|
|
|
attr, value = (xingzhengqu,totalAvgPriceList) |
|
|
|
|
bar = Bar(init_opts=opts.InitOpts(width='1200px',height='1400px')) |
|
|
|
|
totalAvgPriceList.append(round(avg_price * 10000 / 30, 2)) |
|
|
|
|
attr, value = (xingzhengqu, totalAvgPriceList) |
|
|
|
|
bar = Bar(init_opts=opts.InitOpts(width='1200px', height='1400px')) |
|
|
|
|
bar.add_xaxis(attr) |
|
|
|
|
bar.add_yaxis("广州",value) |
|
|
|
|
bar.set_global_opts(title_opts=opts.TitleOpts(title='广州各区单日薪资:元/日'),xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate":"270"})) |
|
|
|
|
bar.add_yaxis("广州", value) |
|
|
|
|
bar.set_global_opts(title_opts=opts.TitleOpts(title='广州各区单日薪资:元/日'), |
|
|
|
|
xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate": "270"})) |
|
|
|
|
bar.render('images/job/广州各区单日薪资.html') |
|
|
|
|
|
|
|
|
|
# 获取岗位数据 |
|
|
|
|
from pyecharts.charts import WordCloud |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getRooms(): |
|
|
|
|
results = job_list_DF.groupby('岗位').size().reset_index(name='count') |
|
|
|
|
room_list = list(results.岗位.values) |
|
|
|
|
weight_list = list(map(int,results['count'].values)) |
|
|
|
|
weight_list = list(map(int, results['count'].values)) |
|
|
|
|
return (room_list, weight_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attr, value = getRooms() |
|
|
|
|
wordcloud = WordCloud(init_opts=opts.InitOpts(width='900px',height='400px')) |
|
|
|
|
wordcloud.add('',zip(attr,value),word_size_range=[2,100]) |
|
|
|
|
wordcloud = WordCloud(init_opts=opts.InitOpts(width='900px', height='400px')) |
|
|
|
|
wordcloud.add('', zip(attr, value), word_size_range=[2, 100]) |
|
|
|
|
wordcloud.render('images/job/广州岗位数据.html') |
|
|
|
|
|
|
|
|
|
# 获取各个区的岗位数量比重 |
|
|
|
|
from pyecharts.charts import Pie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAreaWeight(): |
|
|
|
|
result = job_list_DF.groupby('位置').size().reset_index(name='count') |
|
|
|
|
areaName = list(result.位置.values) |
|
|
|
|
areaWeight = list(map(int,result['count'].values)) |
|
|
|
|
areaWeight = list(map(int, result['count'].values)) |
|
|
|
|
areaName_tmp = [] |
|
|
|
|
for index,item in enumerate(areaName): |
|
|
|
|
areaName_tmp.append(item + str(round(areaWeight[index]/sum(areaWeight)*100,2))+'%') |
|
|
|
|
return zip(areaName_tmp,areaWeight) |
|
|
|
|
pie = Pie(init_opts=opts.InitOpts(width='1200px',height='1200px')) |
|
|
|
|
pie.add('',getAreaWeight()).set_global_opts(title_opts=opts.TitleOpts(title='广州各区岗位数量分布')) |
|
|
|
|
for index, item in enumerate(areaName): |
|
|
|
|
areaName_tmp.append(item + str(round(areaWeight[index] / sum(areaWeight) * 100, 2)) + '%') |
|
|
|
|
return (areaName_tmp, areaWeight) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pie = Pie(init_opts=opts.InitOpts(width='1200px', height='1200px')) |
|
|
|
|
data = getAreaWeight() |
|
|
|
|
pie.add("", [list(z) for z in zip(data[0], data[1])]) |
|
|
|
|
pie.set_global_opts(title_opts=opts.TitleOpts(title='广州各区岗位数量分布')) |
|
|
|
|
pie.render('images/job/广州各区岗位数量分布.html') |